37 research outputs found

    Categories as paradigms for comparative cognition

    Get PDF
    Forming categories is a basic cognitive operation allowing animals to attain concepts, i.e. to represent various classes of objects, natural or artificial, physical or social. Categories can also be formed about the relations holding among these objects, notably similarity and identity. Some of the cognitive processes involved in categorisation will be enumerated. Also, special reference will be made to a much neglected area of research, that of social representations. Here, animals conceive the natural class of their conspecifics as well as the relationships established between them in groups. Two types of social categories were mentioned: (1) intraspecies recognition including recognition of individual conspecifics; and (2) representation of dominance hierarchies and of their transitivity in linear orders

    Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    Get PDF
    BACKGROUND: In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. [br/]METHODOLOGY/PRINCIPAL FINDINGS: We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, (3/4) views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1+/-0.7 vs. Exp 2: 5.2+/-1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. [br/] CONCLUSIONS/SIGNIFICANCE: Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was the most difficult task. These results call for studies exploring the mechanisms involved in face recognition allowing interspecies comparisons, including humans

    Scio Ergo Sum: Knowledge of the Self in a Nonhuman Primate

    Get PDF
    The pressures of developing and maintaining intricate social relationships may have led to the evolution of enhanced cognitive abilities in many social nonhuman species, particularly primates. Knowledge of the dominance ranks and social relationships of other individuals, for example, is important in evaluating one’s position in the prevailing affiliative and dominance networks within a primate society and could be acquired through direct or perceived experience. Our analysis of allogrooming supplants among wild bonnet macaques had revealed that individual females successfully evaluate social relationships among other group females and possess egotistical knowledge of their own positions, relative to those of others, in the social hierarchy. These individuals, therefore, appeared to have abstracted and mentally represented their own personal attributes as well as those of other members of the group. Bonnet macaques also seem to recognise that other individuals have beliefs that may be different from their own, manipulate another individual’s actions and beliefs in a variety of social situations, and selectively reveal or withhold information from others—capabilities displayed by certain individuals that became evident in the course of our earlier studies on tactical deception in the species. In conclusion, the ability to develop belief systems and form mental representations, generated by direct personal experience, suggests a rather early evolutionary origin for fairly sophisticated cognitive capabilities, characterised by an objectified self with limited regulatory control over more subjective levels of self-awareness, in cercopithecine primates, pre-dating those of the great apes. We, therefore, argue, in this review, that bonnet macaques might represent an intermediate stage in the evolution of self-awareness, a process which began with the subjective awareness that characterises most, if not all, higher animal species and culminates in the most sophisticated form of symbolic self-awareness, apparently the hallmark of the human species alone

    Aggressive dominance can decrease behavioral complexity on subordinates through synchronization of locomotor activities

    Get PDF
    Social environments are known to influence behavior. Moreover, within small social groups, dominant/subordinate relationships frequently emerge. Dominants can display aggressive behaviors towards subordinates and sustain priority access to resources. Herein, Japanese quail (Coturnix japonica) were used, given that they establish hierarchies through frequent aggressive interactions. We apply a combination of different mathematical tools to provide a precise quantification of the effect of social environments and the consequence of dominance at an individual level on the temporal dynamics of behavior. Main results show that subordinates performed locomotion dynamics with stronger long-range positive correlations in comparison to birds that receive few or no aggressions from conspecifics (more random dynamics). Dominant birds and their subordinates also showed a high level of synchronization in the locomotor pattern, likely emerging from the lack of environmental opportunities to engage in independent behavior. Findings suggest that dominance can potentially modulate behavioral dynamics through synchronization of locomotor activities.publishedVersionAlcala, Rocio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Caliva, Jorge Martín. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Caliva, Jorge Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Flesia, Ana Georgina. Facultad de Matemática, Astronomía, Física y Computación; Argentina.Flesia, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina.Marin, Raúl Hector. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Marin, Raúl Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Kembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina
    corecore